

Beam Pumping Workshop Houston, Texas October 4 - 7, 2005

Dynamometers Cards Benefits of High Speed and High Resolution Data Acquisition

High Speed Data Acquisition

Acoustic 🗖 Dyna	mometer Powe	r/Current		
Select test to be active (Alt- <u>1</u>) Dynamome (Alt- <u>2</u>) Valve Test (Alt- <u>3</u>) Counter B-	ofor acquisition: eter Tests "DYN" t (Standing and Travi alance Effect Tests	eling) ''VALVE' ''CBE''	Opt Pow	ional Channels ver I Current Sample Rate 30 I Hz
Date/Time	Test Type	Status	Serial No.	Description 60
 240 samples per second best 1. Data can be acquired at time intervals of 15, 30, 60, 120, 240, 480, or greater samples per second. 				

2. A high speed laptop computer allows data to be recorded at the optimum resolution of state-of-theart instrument using sigma-delta analog to digital converters, precision sensors, and shielded cables.

Older Style Analog to Digital Converters DO NOT Have Sensitivity for Small Signals

Downward Spike on Pump Card Near Bottom, Appears to be Improperly Spaced

String Boxes and Inclinometers

- 1. Tends to have poor resolution at top and bottom of stroke
- 2. Smoothing of the Position data required to prevent load spikes

Problems with using Motor RPM to Determine Polished Rod Position

- 1. Calculated position uses API dimensions for a pumping unit entered either by hand or selected from a database.
- 2. Wrong pumping unit is select
- 3. Pumping unit not in the database
- 4. Field assembly of the pumping unit results in dimensions not matching database
- 5. Wrong radius/stroke length
- 6. Direction of rotation

Noise in Position Data Requires Filtering of Acquired Signal

Spikes on Pump Card Near Center Caused by Noise in Position Data

Averaging Important for Longer Duration Event

- 1. Blue 20 Samples per Second results in 20 data values acquired during event.
- 2. Black Median Filter without Regression
- 3. Averaging Smoothes out Peaks and Flattens Curve

A 5 Order Best Fit Regression Filter Smoothed Out Noise in Pump Card

Upstroke Fluid Pound

Tubing anchored or unanchored

Traveling Valve Ball/Seat not closing properly at beginning of upstroke: Flow restricted by very viscous fluid in pump OR TV ball prevented from going on seat OR flow area smaller than plunger above pump to small OR damaged/pitted TV ball.

Shock Loads Increased Rod Failures:Gunk in PumpTwo TVs in Pump

Elapsed Time (Sec)

Erratic Behavior Due to Delay in TV Ball Going on Seat

Shock Loads Increased Rod Failures: Gunk in Pump

Sampling Rate Important for 1/10 Sec Duration High Speed Event

- 1. Blue 20 Samples per Second results in 2 data values acquired during event.
- 2. Black 240 Samples per Second results in 24 data values acquired during event
- 3. Sampling to slow can completely miss occurrence an Event

High Speed Sampling Shows Correct Tag Force

Compare Tag Force of 30 & 240 Hz

High Speed and High Resolution Data Acquisition

- 1. Noisy or poor quality data requires special processing/smoothing to prevent false load spikes.
- 2. High speed/high resolution data required to see character of sudden impact loads.
- 3. High speed/high resolution data is used to clearly analyze the severity of sudden impact loads.

Questions?

